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Energy relaxation in nonlinear one-dimensional lattices
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We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type.
The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping
forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower-frequency modes
relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy
nonlinear modes into lower-energy ones. The lowest-energy modes are absorbed by the cold reservoir, but a
small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency
localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit
behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is ex-
tremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breath-
ers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized
arrays and observing the relaxation behavior.
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I. INTRODUCTION

The localization of vibrational energy in discrete nonli
ear arrays has attracted a huge amount of interest in the
15 years as a possible mechanism for the efficient sto
and transport of energy. The reasons for the broad intere
these phenomena are at least twofold: on the one hand,
embody many of the interesting effects of the interplay
nonlinearity, discretization, and stochasticity, and on
other they may be of use in explaining a variety of physi
and biophysical phenomena. The interest in nonlinear arr
serving as energy storage and transfer assemblies for ch
cal or photochemical processes, is not uncommon@1#, and
literature on the subject goes back for two decades@2#. More
recently, the localization and transport of vibrational ene
has been invoked in a number of physical settings includ
DNA molecules@3#, hydrocarbon structures@4#, the creation
of vibrational intrinsic localized modes in anharmonic cry
tals @5#, photonic crystal waveguides@6#, and targeted energ
transfer between donors and acceptors in biomolecules@7#.

Many types of nonlinear arrays exhibit spontaneous loc
ization, and in each of these the conditions that lead to
calization are complex and multifaceted. A vast literatu
deals not only with different types of arrays but with issu
such as boundary conditions, initial conditions, whether
system is closed or forced, thermal effects, etc. It is imp
sible to present here a full catalog or even sensibly organ
panorama of results; a number of excellent reviews h
aided greatly in the effort@8,9#.

Increasing attention has recently been devoted to therm
ized nonlinear arrays. Whether energy can be transmi
without the destructive thermal and dispersive degrada
1063-651X/2001/64~6!/066608~9!/$20.00 64 0666
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that occurs in harmonic lattices is clearly an important qu
tion: one thinks, for example, about the amazing ener
transfer cascade occurring in the photosynthetic process@10#,
or about the ability of some proteins to efficiently store a
transport and thereby convert chemical energy into mech
cal energy@11–13#. Transport across a thermal gradient a
questions concerning the validity of the usual Fourier l
have very recently been addressed in a number of pa
@14–17#. Relaxation to thermal equilibrium and the nature
this equilibrium have been addressed in recent work@18–
21#, as has the transport of energy in thermal arrays@22–26#.

In addition to the phonons associated with the linear p
tion of the potential in a nonlinear array, a variety of statio
ary, and nonstationary but long-lived excitations are possi
including solitons@17,24,25,27–29# ~long-wavelength exci-
tations that persist from the continuum limit upon discretiz
tion!, periodic breathers@8,9,21,24,25,28–37# ~spatially lo-
calized time periodic excitations that persist from t
anticontinuous limit upon coupling!, and so-called chaotic
breathers@21# ~localized excitations that evolve chaotically!.
These nonlinear excitations arise~even spontaneously! and
survive for a long time in numerical experiments, and th
clearly play an important role in determining the global ma
roscopic properties of nonlinear extended systems.

The nonlinearity in discrete nonlinear arrays may occur
the interactionsV(xi ,xj ) and/or in the ‘‘local’’ or ‘‘external’’
potentialsU(xi). Here xi is the displacement of particlei
from its equilibrium position. While the presence of loc
potentials favors energy localization, we are interested in
calized energy that can also move, and mobility tends to
easier in the absence of a local potential@20,22,23#. We
therefore focus on Fermi-Pasta-Ulam~FPU! lattices of unit
©2001 The American Physical Society08-1
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masses, each connected to its nearest neighbors by qua
and/or quartic springs~FPU b model!. Here we deal only
with the one-dimensional problem~the two-dimensional
FPU system will be considered elsewhere@38#!. The Hamil-
tonian of the system is

H5(
i 51

N ẋi
2

2
1

k

2 (
i 51

N

~xi2xi 21!21
k8

4 (
i 51

N

~xi2xi 21!4,

~1!

whereN is the number of sites.k and k8 are the harmonic
and anharmonic force constants, respectively. In this w
we focus on the thermal relaxation of FPU chains. Therm
relaxation and associated mobility properties turn out to
entirely differentin purely harmonic (k850), purely anhar-
monic (k50), and ‘‘mixed’’ (k andk8Þ0) one-dimensiona
~1D! systems.

To study energy relaxation we initially thermalize the sy
tem at temperatureT ~see below!. We then connect the en
sites of the system to a zero-temperature reservoir via ap
priate damping terms and observe the thermal relaxatio
the array toward zero temperature@19,39,40#. In order to
understand the role of the various interactions~quadratic,
quartic! and of the localized modes that spontaneou
emerge in the thermalization and relaxation process, we
form a second numerical experiment where we inject, at
center of the thermalized chain, a localized breatherlike
citation of energy much higher than the thermal energy. T
dynamics of such excitations have been studied in some
tail in a variety of contexts, but not in thermalized array
Again, we observe how the thermal energy as well as
excitation energy relax toward equilibrium.

Section II describes the preparation of our system. In S
III we discuss the relaxation behavior of an initially therma
ized chain connected to a zero-temperature reservoir. In
IV we consider the relaxation behavior when a high-ene
localized excitation is introduced in the thermalized cha
Section V contains a summary of the results.

II. INITIAL CONDITIONS

Different energy distributions in nonlinear arrays evol
quite differently@18,21,28,41#, and therefore existing work is
not sufficient to predict the relaxation behavior of initial
thermalized arrays. To thermalize the system to a given t
peratureT we augment the equations of motion resulti
from Eq.~1! with the Langevin prescription connecting ea
site to a heat bath:

ẍi52
]

]xi
@V~xi2xi 21!1V~xi 112xi !#2g0ẋi1h i~ t !.

~2!

Here V(xi2xj ) is the FPU potential,g0 is the dissipation
parameter, and theh i(t) are mutually uncorrelated zero
centered Gaussiand-correlated fluctuations that satisfy th
fluctuation-dissipation relation at temperatureT:

^h i~ t !&50, ^h i~ t !h j~ t8!&52g0kBTd i j d~ t2t8!. ~3!
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The brackets here and below denote an ensemble ave
and kB is Boltzmann’s constant. We implement free-e
boundary conditions,x05x1 andxN5xN11, a common set of
boundary conditions in relaxation studies~we do stress, how-
ever, that although boundary conditions do not strongly
fect equilibrium properties, they do strongly affect some
laxation dynamics!. For the integrations here an
subsequently we use the fourth-order Runge-Kutta meth

The equilibrium energy landscape of our arrays can
characterized via appropriate correlation functions and/or
sociated frequency spectra. A convenient choice is the r
tive displacement autocorrelation function

C~t!5
1

~N21! (
i 52

N

^D i~ t1t!D i~ t !&, ~4!

whereD i(t) is the relative displacement

D i~ t ![xi~ t !2xi 21~ t !. ~5!

The associated spectrum is

S~v!52E
0

`

dt C~t!cosvt. ~6!

Typical equilibrium spectra for the three chains are sho
in Fig. 1. The temperature and other parameters are indic
in the figure and caption. The harmonic spectrum has a p
nearv5A4k5A2, and this is also roughly the temperatur
independent spectral width. This spectrum can be calcula
analytically @23#, and one obtains~with periodic boundary
conditions, but for sufficiently long chains the boundary co
ditions do not affect the thermal equilibrium spectrum!:

S~v!5
4g0kBT

N (
q50

N21
12cos~2pq/N!

@r 1
2~q!1v2#@r 2

2~q!1v2#
, ~7!

where

FIG. 1. Equilibrium spectrum for each of the three arrays w
N550 atT50.5. Inset: frequency vs energy for the three potentia
8-2
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r 1,2~q!52
g0

2
6AS g0

2 D 2

24k sin2S pq

N D . ~8!

The inset in Fig. 1 shows the frequency vs energy cur
obtained from the usual relation for the period of an osci
tion in a potentialV(y),

v~E!5
2p

t~E!
, t~E!54E

0

ymax dy

A2@E2V~y!#
, ~9!

where the amplitudeymax is the positive solution of the equa
tion V(y)5E. Note that the frequencyv5Ak associated
with the harmonic oscillator in the inset lies in the middle
this spectrum, and that the harmonic spectrum is tempera
independent except for the overall coefficient. The tempe
ture dependence of the nonlinear array spectra is cons
ably more complex. The purely hard FPU chain~short-
dashed lines! shows a broader spectrum, consistent with
fact that at energies around 0.5~our temperature!, oscillator
frequencies associated with a purely hard potential are hig
than that of a harmonic oscillator~cf. inset!. For a consider-
ably lower energy, sayE50.1, the typical frequency assoc
ated with a purely hard oscillator in the inset islower than
that of a harmonic oscillator; the associated spectrum
temperatureT50.1 ~not shown here! is narrower than that o
the harmonic chain. The mixed chain~long-dashed lines! has
a broader spectrum than the harmonic or purely hard ar
at any temperature, again consistent with the inset. Whe
the harmonic array only supports extended modes~phonons!,
some of the frequencies for the purely hard and mixed arr
are associated with nonlinear modes that include~especially
at high frequencies! localized modes. Furthermore, it shou
be remembered that whereas each phonon mode is chara
ized by a single frequency, each nonlinear mode in gen
involves many frequencies.

III. RELAXATION OF THERMALIZED ARRAYS

Relaxation of thermalized arrays from an initial tempe
ture T to zero temperature has been studied in systems
nonlinearlocal potentials@39,40#. Some aspects of therma
relaxation in FPU chains have recently been investiga
@19#; our results significantly clarify and expand on the
recent results. In particular, we provide more detailed insi
into the mechanisms that contribute to the thermal relaxa
process. We also provide a more detailed analysis of
relaxation dynamics at long times.

As in previous relaxation studies, we disconnect the th
malized array from the temperature-T heat bath@i.e., we re-
move theh i(t) andg0 terms from the equations of motion#
and connect the ends of the chain~sites 1 andN) via a
damping with rateg to a zero-temperature reservoir. Th
causes the total energy of the chain to decay through th
end points. In all our simulations we setg50.1. We present
several sets of figures~all in dimensionless units! to illustrate
the relaxation behavior. Typical energy relaxation curves
arrays averaged over initial thermalized configurations
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shown in Fig. 2. Associated with this evolution we define t
time-dependent spectra

S~v,t ![2E
0

tmax
dtC~t,t !cosvt, ~10!

wheretmax[2p/vmin andvmin is chosen for a desired fre
quency resolution; the choicevmin50.0982, corresponding
to tmax564, turns out to be numerically convenient. Th
time-dependent correlation function is actually an avera
over the time intervalt2t0 to t, where we have chosent0
5100 ~short enough for the correlation function not
change appreciably but long enough for statistical purpos!
and is defined as follows:

C~t,t !5
1

~N21! (
i 52

N
1

DtE0

Dt

dt8 ^D i~ t2t8!D i~ t2t82t!&,

~11!

whereDt[t02tmax. In Fig. 3 we display the evolution o
the spectra for each of the chains. The spectral renditio
revealing because it clearly indicates that the decay me
nisms for harmonic and each of the anharmonic arrays
entirely different.

Several features of the energy decay curves are note
thy. The energy in the harmonic array~solid curve in Fig. 2!
is calculated by Piazza et al.@19# to be given by

E~ t !

E~0!
5e2t/t0I 0~ t/t0!, ~12!

whereI 0 is the modified zero-order Bessel function. At fir
the decay is exponential with time constantt05N/2g (t0
5250 in the figure! and then at times larger than this tim
the decay changes to (t/t0)21/2. The exponential decay time
is that associated with the lowest-frequency phonon mo
since they have the shortest decay times. The power-law
laxation arises from a cascade of different decay times of

FIG. 2. Energy vs time for various relaxing arrays withN550.
Initially each array is in thermal equilibrium at the temperatu
indicated in the figure. The normalized energy of the harmonic
ray is independent of temperature.
8-3
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different phonon modes. Eventually the decay becomes
ponential again when only the highest-frequency modes
vive, but the energy in our chain is too low at that point to
picked up within our precision. A well-known but importan
point needs to be made here so that the contrasting beh
of anharmonic chains can be clarified later: the phonon
the harmonic chain are of courseindependentof one another,
and each has to be absorbed by the cold reservoir separ
As noted above, each is absorbed on a different time scal

FIG. 4. Schematic representation of the spectral relaxation c
nels. The spectra of Fig. 3 for timest50 and t52000 are shown
again here, and the arrows depict the pathways of different spe
components. Downward arrows indicate absorption by the cold
ervoir, while angled arrows denote degradation from one spe
region to another. The relative lengths of the arrows represen
associated rates.

FIG. 3. Time evolution of spectra for various relaxing array
First panel: harmonic chain withk50.5. Second panel: purely an
harmonic chain withk850.5. Third panel: mixed chain withk
5k850.5. The thin vertical line indicates the frequencyv5A4k
5A2. Initially ( t50 curves! each array is in thermal equilibrium a
T50.5.
06660
x-
r-

ior
in

ely.
In

n-

ral
s-
al
he

FIG. 5. Energy landscapes of 30-site arrays initially thermaliz
at T50.5. Time advances along they axis until t51000. A gray
scale is used to represent the local energy, with darker sha
corresponding to more energetic regions. First panel: harmo
chain,k50.5 andk850. Second panel: purely anharmonic cha
k50 andk850.5. Third panel: mixed chain,k5k850.5.
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ENERGY RELAXATION IN NONLINEAR ONE- . . . PHYSICAL REVIEW E 64 066608
the first panel of Fig. 3 we show the spectrum of the h
monic chain at different times during the relaxation proce
starting with the initial thermalized spectrum@in this figure
S(v,0)[S(v) of Fig. 1#. The evolution confirms thatlow
frequencies decay more rapidly in the harmonic chain—
spectrum is absorbed by the cold reservoir from the bot
up, and by timet52000 only the longer-lived band-edg
modes remain in the system. The spectral decrease oc
‘‘vertically,’’ that is, each spectral component decays direc
into the reservoir; this is shown schematically in Fig.
where the downward arrows represent absorption by the
ervoir and their relative length schematizes the absorp
rate. The first panel of Fig. 5 shows the time evolution of
local spatial energy landscape using a gray scale to con
higher-energy~darker! from lower-energy~lighter! regions.

The purely hard array relaxes more rapidly than the h
monic and the energy decays essentially exponentially, i
cating a single predominant decay channel. Note that bei
purely quartic chain, there are no phonons in this system.
also observe in the second panel of Fig. 3 that high
frequency excitations relax first. At timet52000 only low-
frequency excitations remain in the chain. This behavio
exactly opposite to that of the harmonic chain. We find t
the dominant relaxation mechanism is for the high-freque
portions of the spectrum to degrade into lower-frequency
citations, as schematically indicated by the sloped arrow
Fig. 4. Such a degradation is possible here since individ
frequencies are not associated with normal modes in the
harmonic system. In turn, these lower-frequency excitati
decay into the reservoir. Specifically, the high-frequen
components of the spectrum are mainly due to mobile lo
ized modes that degrade into lower-energy excitations
they move and collide with one another, and this degrada
occurs with a relatively short-time constant that is shorter
localized modes that have a higher velocity. The low
frequency excitations are in turn absorbed into the cold
ervoir but continue to be replenished through the degrada
process. We conjecture that the absorption of the low
frequency components defines the observed exponentia
cay constant of the total chain energy. However, and imp
tantly, among the low-frequency excitations are some t
persist for a very long time, certainly beyond the times of o
simulations. These, which are the only remaining spec
components at timet52000, are ‘‘labeled’’ by short down-
ward arrows in the relaxation schematic and include rat
stable breather and/or soliton modes that move very slo
and are localized away from the boundaries. At the sa
time, some portion of the high-frequency spectrum is a
directly absorbed by the cold reservoir~indicated by the
short downward arrow in the high-frequency region of F
4!. For example, when a highly mobile localized excitati
reaches a boundary it may be absorbed directly by the re
voir ~or it may be reflected and return into the chain w
some energy loss!. The role of high-frequency mobile mode
and of low-frequency slowly moving or stationary modes
this picture will be tested in more detail in the next sectio
where we explicitly inject a high-frequency localized mo
into the array and observe the relaxation dynamics. We
note here that our picture is consistent with known fa
06660
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about localized states. In particular, it is known that high
frequency and/or higher amplitude localized modes c
move at higher velocities@18,21,25#. It is also known that
while in motion such modes lose energy through collisio
with other excitations. Also, Fig. 2 shows a faster decay
higher temperatures, which is consistent with our obser
tions elsewhere that the speed of an injected pulse~and there-
fore, we conjecture, the speed of a moving localized mo!
in these arrays increases with temperature@22#. The energy
landscape associated with these descriptions is shown in
second panel of Fig. 5.

Almost all FPU analyses in the literature involve arra
that include both harmonic and anharmonic contributio
but the distinct role of each has not been clarified. Our
laxation results show an interesting sequence of relaxa
behaviors. At early times the mixed array relaxes more r
idly than the harmonic, because there are low-frequency
citations close to harmonic phonons~but note that phonons
are no longer exact normal modes! andhigh-frequency exci-
tations in the system. Energy relaxation and decay thus
volvesboth of the mechanisms discussed above. Again,
cause initially the high-frequency modes move more rapi
at higher temperature, the early time decay is faster at hig
temperatures. That both low- and high-frequency modes
lax rapidly is clearly seen in the third panel of Fig. 3, whic
quickly loses both low-~as in the first panel! and high-~as in
the second panel! frequency portions of the spectrum. In th
energy decay curve there is then a crossing after which
mixed chain relaxes much moreslowly than the harmonic
and the purely anharmonic. This occurs when the lo
frequency modes~phonons! have essentially all decayed, an
only certain high-frequency spectral components remain
clearly seen in the spectrum. We conjecture that these pe
tent modes are localizedquasistationarybreathers that deca
extremely slowly, and again pursue this notion in the n
section. The associated decay schematic is illustrated in
4. Note that with increasing temperatures the station
breathers are more energetic, leading to a slower decay o
total chain energy at long times. Indeed, we find that the v
slow decay at long times is a stretched exponential, as sh
in Fig. 6. Here we plot

b~ t !5
d

d ln t
lnF2 lnS E~ t !

E~0! D G . ~13!

If E(t)/E(0) is of stretched exponential form exp@2(t/t)s#,
thenb(t)5s. Figure 6 shows the stretched exponential b
havior for various arrays and clearly points to aT-dependent
but N- and g-independent exponents. The decrease ofs
with increasing initial temperature is explained by the grea
stability of more energetic breathers. TheN andg indepen-
dence is explained by the fact that the rate-limiting step
the slow relaxation is the leakage of the breather. The lo
energy output of this leakage is quickly absorbed by the c
reservoir@40#.

These results immediately raise a question that in hi
sight pervades a number of results throughout the literat
if both the purely quartic chains and also the mixed cha
support high-frequency localized solutions, why do the
8-5
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modes relax so rapidly in the former but seem to persist
very long times in the latter? The answer lies in the cruc
role of the quadratic terms of the potential and the con
quent behavior of the low-frequency portion of the spectru
When localized solutions~breathers! are sufficiently strongly
perturbed, they respond by moving@18,21,25# and hence are
subject to the degradation process described earlier.
mixed chain, the low-frequency excitations~phonons! that
can easily perturb breathers decay quickly, and at later ti
only the essentially unperturbed high-frequency breathers
main. These almost-stationary solutions of the system ha
move. Since localized breather modes tend to lose their
ergy only while they move, these quasistationary breath
can persist for a very long time. In the purely anharmo
chain, on the other hand, there are no phonons and the
frequency excitations include slowly-moving quasistation
anharmonic modes that persist for a long time and that c
tinue to perturb the high-frequency localized modes. Th
energetic localized modes thus continue to move and co
with the low-frequency modes, resulting in degradation in
lower-energy excitations.

The third panel in Fig. 5 shows the spontaneous app
ance, slowing motion, and eventual stoppage of a breath
the mixed chain. It is this breather, absent from the pur
hard array, that mainly leads to the persistent high-freque
spectral contributions and to the extremely slow relaxation
the mixed chain energy at long times.

IV. RELAXATION OF THERMALIZED ARRAY
WITH AN INJECTED LOCALIZED EXCITATION

In the previous section we portrayed a relaxation dyna
for anharmonic FPU arrays that involves a very specific vi
of the roles of high-frequency localized modes, lo
frequency anharmonic modes, and phonons. In order to
ther test these ideas, in this section we start again with
thermalized chain, but now we inject a high-amplitude loc
ized excitation at timet50 in the center of the chain. Spe

FIG. 6. Plot of b(t) as a function of time for various mixed
arrays. A flat line belowb(t)51 indicates stretched exponenti
behavior.
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cifically, we inject an odd-parity excitation~amplitudeA at
siteN/2 and2A/2 at each immediately adjacent site!. These
displacements lead to an exact breather solution for the
teraction potentialV(xi2xi 21)5(xi2xi 21)n as n→` ~as
does the even-parity breather of amplitudeA at one site and
2A at an immediately adjacent site! and are quite close to
exact for the quartic FPU potential@42,43#. The fate of the
excitation as the entire system relaxes clarifies the role
the different spectral components in the relaxation proce
The excitation amplitude is sufficiently large (A52) to in-
sure clear presence above the thermal background.

In the previous section we introduced the notion of loc
ized modes as an important component in the thermal re
ation process of the FPU systems. We explicitly differen
ated betweenmobile and stationary localized modes, and
noted that energy loss occurs when a localized mode mo
and collides with other localized modes. We also stated
this energy loss occurs through degradation into low
frequency modes. In order to focus on this mechanism w
out additional interference from the ends of the chain ot
than the normal low-frequency decay processes discu
earlier, in this section we use relatively long chains,N
5300. This is sufficiently long that we never see a hig
energy localized mode reaching a boundary site before it
degraded or stopped moving.

The motion of the injected excitation during the relaxati
process is followed in two ways. As before, we obtain t
spectrum of the chains at various times~see Fig. 7!. We also
calculate the mean-squared displacement

^x2~ t !&[ K F i max~ t !2
N

2 G2L ~14!

as a measure of the position of the excitation~its dispersion
in the anharmonic chains is very small@22#!. HereN/2 is the

FIG. 7. Time evolution of spectra for various relaxing arra
initially at T50.1 with a high-amplitude localized mode injected
t50. First panel: harmonic chain withk50.5. Second panel: purely
anharmonic chain withk850.5. Third panel: mixed chain withk
5k850.5. The thin-vertical line again indicates the frequencyv
5A4k5A2. Thet50 spectra are not shown.
8-6
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initial point of highest energy in the chain andi max(t) is the
point of maximum energy at timet.

In a harmonic chain the progression is as expected fo
harmonic system. The initial localized excitation sprea
quickly over the entire array and thus loses its localized ch
acter. The associated Fourier decomposition into pho
modes dictates the relaxation behavior seen in Fig. 7, wh
is much like that seen in Fig. 3, except that the hig
frequency~longer-lived! phonon modes are now more pop
lated.

In the purely anharmonic chain, shown in the seco
panel of Fig. 7, the initial excitation introduces frequen
components in a fairly broad spectral range~including fre-
quencies well above the corresponding thermal range!. Part
of this spectral contribution is associated with an excitat
that remains spatially localized~the rest appears because t
injected excitation is not an exact mode of the thermaliz
chain; whereas the localized mode appears with each rea
tion, the other spectral contributions vary somewhat in de
from one realization to another!. Consistent with our descrip
tion in Sec. III, the high-frequency components again re
quickly, indicating an energy degradation of the hig
frequency excitations into lower-frequency modes. The
tailed trajectory of the initial localized excitation is qui
interesting, and a few particular realizations are shown in
upper panel of Fig. 8. After a short time the excitation beg
to move in one direction or the other with equal probabil
~an initially even-parity excitation behaves very similarly b
takes a longer time to begin to move because even-pa
breathers are more stable in FPU chains!. The motion con-
tinues for a period of random duration. Then the excitat
stops moving for a random period, until it moves again
either direction for a random period of time. While statio
ary, we have observed that~whatever its initial configuration
even or odd! the excitation has even parity, but when
moves it alternates between even and odd parity. Furt
more, the excitation only loses energy while in motion.
detailed analysis reveals that the stationary excitation is

FIG. 8. Typical injected breather trajectories. Upper pan
purely anharmonic array. Lower panel: mixed array.
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turbed again and again by slow low-frequency localized
citations that collide with it and repeatedly set it in motio
These low-frequency modes are precisely those that, as
scribed in the previous section, persist for a long time in
absence of a harmonic component. This sequence of ev
serves to confirm our thermalization analysis of Sec. III.

Mean-squared displacement results for a variety of
rameter combinations are shown in Fig. 9. The mean-squ
displacement is seen to follow the superdiffusive la
^x2(t)&;ta with a53/2 over the entire lifetime of the exci
tation. This particular exponent is recovered for the pur
quartic chain under all conditions that we have tested, tha
independently of force constant, excitation amplitude, a
temperature. Variations in parameters affect the breather
locity, which in turn modifies the coefficient oft3/2, but not
the power~a higher temperature, a stronger force consta
and a higher excitation amplitude all lead to higher velo
ties!. Indeed, it does not even matterwhen in the course of
the relaxation process the localized excitation is introduc
its mean-squared displacement follows the above beha
until the excitation is extinguished, again confirming that th
behavior is mainly caused by the persistent low-freque
excitations.

A model that leads to the observed power law and c
tains the main features of the excitation collision picture w
recently developed in a different context@44#. It describes a
light particle that moves with a constant speed6v among
point scatterers arranged randomly on a line. The interv
between scattering points,jn , are independent identically
distributed random variables described by a probability d
sity functionm(j). If the density decays asm(j);j2(11g)

with 1,g,2 whenj is large, then the mean-squared d
placement of the light particle goes as^x2&;ta5t32g. In
particular, wheng53/2 thena53/2 as in our results. This
model, suitably modified, may describe our system. Our s
terers~low-energy breathers! do move, but all that is required
to obtain the observed power law is that the times at wh
they collide with the injected excitation be distributed a

l: FIG. 9. Mean-squared displacement of a localized mode in v
ous FPU arrays at various temperatures. The short straight line
guide to the eye and has a slope of 3/2.
8-7
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cording to n(t);t25/2 ~in the work of Barkaiet al. @44#,
distance intervals and time intervals are interchangeable
cause the scatterers are stationary!. The quiescent period
simply modify the coefficient of this and of the resultin
mean-squared displacement distribution, but the powera is
determined by the collision time distribution exponent. N
merical results for the distribution of times between breat
collision events are shown in Fig. 10. The data is noisy~and
could of course be made smoother with more realizatio!
but the confirming trend is clear. This is of course simp
phenomenology, since we have no explicit dynamical mo
to obtain this distribution.

In the mixed chain, whose spectra are shown in the th
panel of Fig. 7, the initial excitation again leads to the a
pearance and persistence of high-frequency spectral com
nents. Typical trajectories of the highest-energy mo
~which here, too, remain localized! are shown in Fig. 8. The
difference between the purely anharmonic and the mi
typical trajectories are evident: whereas the excitations in
former continue to move until extinguished, the excitatio
in the mixed chain slow down and eventually stop altoget
when all perturbing excitations have been swept out of
system. Once there are essentially no other excitation
collide with a stationary breather, it remains in the system
spite of the dissipative bath acting on its ends. This is co
pletely consistent with the landscape shown in Fig. 7. T
mean-squared displacement in Fig. 9 clearly reveals this
havior as well: the exponent begins at 3/2 but eventu
bends towardsa50 when the breather stops moving.

V. CONCLUSIONS

In this paper we have studied energy relaxation in o
dimensional nonlinear arrays with quartic interparticle int
actions~Fermi-Pasta-Ulam or FPU arrays!. In one scenario,
we have thermalized the arrays to a temperatureT and then
observed the relaxation of the arrays when the boundaries

FIG. 10. Distribution of collision times of the high-frequenc
localized mode in the purely anharmonic FPU chain for times m
greater than the typical oscillation period of the breather. T
straight line has a slope of25/2.
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connected to a zero-temperature reservoir through dam
terms. In another scenario, we have introduced a high-en
localized excitation in the thermalized array and have
served the relaxation process and the fate of this excitat
This second scenario serves to confirm our description of
dynamics of thermal relaxation. Throughout we have appl
free-end boundary conditions.

Our most salient results concern the role of harmonic c
tributions to the FPU potential as distinct from the therm
ization of an array. In other words, we emphasize that o
can equilibrate an array at a given temperature, whethe
not its interactions include quadratic interactions, and
pose the following question: What exactly is the role of the
interactions?

We have confirmed that thermal relaxation in a pure
harmonic chain involves the sequential decay of independ
phonon modes starting with those of lowest frequency a
moving upward across the spectrum. We have also confirm
that the total energy of the array decays exponentially
short times and as an inverse power law at longer times
calculated by Piazzaet al @19#. When a localized excitation
is introduced in a purely harmonic array it quickly sprea
and loses any localized identity.

In a purely anharmonic chain there are no phonons,
the anharmonic excitations, in general, include localiz
modes. High-frequency spectral components include hig
localized modes that may be stationary but are easily se
essentially ballistic motion by sufficiently strong scatteri
events. As a result, their net motion is superdiffusive. Wh
not in motion these modes can retain their energy for a lo
time, but while in motion they lose energy through collisio
with other excitations and eventually degrade into low
energy excitations. The lowest-energy excitations decay
the cold reservoir, while other low-energy excitations pers
for a long time in the chain. The spectral relaxation proce
mostly from the high-frequency end of the spectrum dow
ward. At long times the energy residue that remains in
chain in the form of low-frequency localized excitations th
move slowly is quite persistent but very small. To confir
this description we have observed the dynamics of an
jected localized high-amplitude excitation. We observe tha
is perturbed by the thermal excitations, which sets
breather in motion. This motion alternates with quiesc
periods, but resumes when the excitation is again pertur
sufficiently strongly. Since during its lifetime there is alwa
a slowly moving thermal background, the breather contin
to resume motion until it disappears into the relaxing therm
background. The time dependence of the mean-squared
placement of the breather is remarkably universal over
entire lifetime, ^x2&;t3/2, independently of initial breathe
amplitude, temperature, and force constant.

In a mixed anharmonic array the relaxation process
volves phononlike modes~with the lowest frequencies de
caying first! and also high-frequency anharmonic mod
~with the highest frequencies decaying first!. The relaxation
is at first rapid, but as the phonon decay ‘‘sweeps’’ the s
tem clean of low-energy excitations, quasistationary hig
energy breathers are no longer perturbed and remain es
tially stationary; the subsequent relaxation process

h
e
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exceedingly slow. When a high-energy localized excitation
injected in the mixed array, at first it is perturbed by therm
excitations that induce motion. However, as the thermal
citations are swept out of the system through the harmo
channel, the breather stops moving and survives for a v
long time, thus confirming the relaxation picture. Associa
with this description is a mean-squared displacement tha
first goes aŝ x2&;t3/2 but then becomes independent
time.

From a broader perspective, we have shown that vib
tional energy localization and persistence is aided by
presence of an efficient mechanism to remove other ba
ground excitations that might perturb and/or destroy locali
tion. In our specific model, localization is due to hard anh
monic interactions and the removal mechanism involve
harmonic phonon channel, but one can envision other lo
n-

s.
o,

,

. E

v.

K

06660
s
l
-
ic
ry
d
at

a-
e
k-
-
-
a
l-

ization and background sweeping processes that lead
similar outcome. From a narrower perspective, there ar
number of questions that remain to be explored, includ
relaxation in higher dimensions and the incorporation
more realistic potentials.
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